Если увеличить давление то скорость реакции

Химическая кинетика.Скорость химических реакций

Если увеличить давление то скорость реакции

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt.

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt).

Как заставить частицы чаще сталкиваться, т.е. как увеличить скорость химической реакции?

1. Самый простой способ – повысить температуру. Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетичекий барьер реакции.

Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается.

Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается.

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта.

Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается.

Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что большинство реакций примерно одинаково увеличивают скорость (примерно в 2-4 раза) при повышении температуры на 10оС.

 Правило Вант-Гоффа звучит так: повышение температуры на 10оС приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

 здесь v2 — скорость реакции при температуре T2, v1 — скорость реакции при температуре T1, γ — температурный коэффициент скорости реакции, коэффинциент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или арстворители испаряются при повышенной температуре и т.д., т.е. нарушаются условия проведения процесса.

2. Концентрация. Также повысить число эффективных соударений можно, изменив концентрацию реагирующих веществ. Понятие концентрации, как правило, используется для газов и жидкостей, т.

к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских  ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v —  скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например, для реакции образования аммиака:

N2  +  3H2  ↔  2NH3

 закон действующих масс выглядит так:

Константа скорости реакции показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция осстоит из несольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов.

 При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции.

Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление. Для газов концентрация напрямую зависит от давления. При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть  газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается.

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

CaCO3  +  SiO2  ↔  CaSiO3  +  CO2

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов,  а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор.

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором.

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу).  Примерный механизм работы катализатора для реакции вида А + В можно изобрать так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности.

Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами.

К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака:

N2  +  3H2  ↔ 2NH3

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют высокоэффективно и избирательно, с избарительностю 100%.

К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами. Например, для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции.  При этом ингибиторы не являются катализаторами наоброт. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ.

Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности.

Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод кипящего слоя. Например, при производстве серной кислоты методом кипящег ослоя производят обжиг колчедана.

6.Природа реагирующих веществ. На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

Источник: https://chemege.ru/kinetika/

Скорость реакции давление

Если увеличить давление то скорость реакции

Увеличение давления в системе в 3 раза равносильно уменьшению объема системы в 3 раза. При этом концентрации реагирующих веществ возрастут в 3 раза. Согласно закону действующих масс, начальная скорость реакции равна:

После увеличения давления в 3 раза концентрации NO и O2 увеличатся в 3 раза, и скорость реакции давление станет равна:

Отношение конечной скорости реакции давление к начальной скорости реакции давление показывает, как изменится скорость реакции после изменения давления.

Следовательно, получаем скорость реакции давление:

Ответ:

скорость реакции увеличится в 27 раз.

  1. Во-первых :2NO + O2 = 2NO2, а не то, что Вы написали. Давление сильно влияет на скорость реакций с участием газов, потому что оно непосредственно определяет их концентрации. По принципу Ле-Шателье увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т. е. к образованию меньшего числа молекул) , это значит, что в нашем случае увеличится скорость ПРЯМОЙ реакции. Скорость химических реакций, протекающих в однородной среде при постоянной температуре, прямо пропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов. До изменения давления реакция описывается кинетическим уравнением: V1 = k [NO]*2 · [O2]; При увеличении давления в 4 раза концентрации реагентов увеличатся в 4 раза. После увеличения давления в 4 раза реакция описывается кинетическим уравнением: V2 = k (4[NO])*2 · 4[O2]= 64 k [NO]*2 · [O2]; Находим изменение скорости реакции при P2=4P1: V2 / V1 = 64

    Скорость увеличится в 64 раза.

  2. V1=k*C(N2)*C(H2)3 2/ V2=k*C(N2)*(xC(H2))3, где х- число, показывающее, во сколько раз необходимо увеличить концентрацию водорода 3. V2/V1=100, откуда х3=100, x=4,65

    ответ: концентрацию водорода необходимо увеличить в 4,65 раз

  3. Скорость реакции N2+ 3H2 = 2NH3 рассчитывается по формуле: v = K*[N2]*[H2]3, где концентрации реагентов – в степени, равной коэффициентам в уравнении. Значит, [H2] нужно возвести в 3-ю степень:

    23 = 8 во столько раз увеличится скорость

  4. овышения давления в 3 раза скорость простой реакции 2NO+O2=2NO2 возрастёт 1)в 3 раза 2)в 9 раз … 4)в 18 раз 2.Температурный коэффициент реакции равен 2.при нагревании от 20 градусов до 50 скорость реакции возрастает 1)в 2 раза 2)в 4 раза 3)в 6 раз 4)в 8 раз 3.изменение давления влияет на скорость химической реакции 1)между … и гидроксидом калия 4.к каталитическим процессам относится реакция между 1)натрием и водой 2)бутеном-1 и водой … и водой 4)оксидом меди(2) и водородом 5.скорость реакции цинка с раствором серной кислоты не зависит … протекает реакция 1)Ag+Cl 2)Fe+O2 3)N2+O2 4)Cl2+Fe 9.при нагревании на каждые 10 градусов цельсия скорость
  5. aA + bB = cC + dD В этом уравнении строчными буквами обозначены стехиометрические коэффициенты, а прописными – формулы веществ. Для этого общего случая скорость прямой реакции определяется следующим уравнением: Vпр = k1([A)a * (B)b, а скорость обратной Vобр = k2(C)c * (D)d

    Cкобки в этих уравнениях обозначают молярные концентрации веществ, а константы k1 и k2 – константы скорости.

  6. ) уменьшить объем=увеличить давление= увеличить конц, значит u = k*c(CO)*c(Cl2) После уменьшения объема: u = k* 2c(CO)* 2c(Cl2) Если поделить второе на первое, то получится, что скорость увеличилась в 4 раз 2)увеличить объем = уменьшить давление= уменьшить концентрацию u = k*c(CO)*c(Cl2) После увеличения: u = k*1/3c(CO)*1/3c(Cl2)

    Поделить второе на первое, получится 1/9, т.е. скорость уменьшилась в 9 раз

  7. при увеличение концентрации NO в 2 раза? б) увеличение концентрации хлора в 3 раза?

    в) увеличение концентрации NO и Cl2 в 4 раза?

Контрольное задание № 5 Тема: Химическое равновесие

1. 2 SO2 (газ) + O2 (газ)= 2 SO3 +Q

Если объяснить по простому, то + идет всегда к – и наоборот. То есть при увелечении химическое равновесии смещается в сторону того, чего меньше.

а) При повышении температуры химическое равновесие сместится в сторону продуктов реакции(←). Так как в правой стороне стоит ( +Q), то химическое равновесие смещается в сторону меньшего.

б) При понижении давления химическое равновесие сместится тоже в сторону продуктов реакции(←). Так как в левой стороне объем продуктов равен 3, а в правой 2 (сумма коэффициентов). Поэтому меньшее к

· 2. astermax

· ученый

2014-01-11T10:01:36+00:00

А) K= /( *[O2])
b) K= /([N2]* ) c) По идее, нечего писать, ибо газообразных в-в в системе нет.

d) K=[CO2]

3.

Дата добавления: 2016-12-18; просмотров: 796 | Нарушение авторских прав | Изречения для студентов

Источник: https://lektsii.org/13-26938.html

Скорость химической реакции

Если увеличить давление то скорость реакции

Скорость химической реакции – основное понятие химической кинетики, выражающее отношения количества прореагировавшего вещества (в молях) к отрезку времени, за которое произошло взаимодействие.

Скорость реакции отражает изменение концентраций реагирующих веществ за единицу времени. Единицы измерения для гомогенной реакции: моль/л * сек. Физический смысл в том, что каждую секунду какое-то количество одного вещества превращается в другое в единице объема.

Мне встречались задачи, где была дана молярная концентрация вещества до реакции и после, время и объем. Требовалось посчитать скорость реакции. Давайте решим подобное несложное задание для примера:

Молярная концентрация вещества до реакции составляла 1.5 моль/л по итогу реакции – 3 моль/л. Объем смеси 10 литров, реакция заняла 20 секунд. Рассчитайте скорость реакции.

Влияние природы реагирующих веществ

При изучении агрегатных состояний веществ возникает вопрос: где же быстрее всего идут реакции: между газами, растворами или твердыми веществами?

Запомните, что самая высокая скорость реакции между растворами, в жидкостях. В газах она несколько ниже.

Если реакция гетерогенная: жидкость + твердое вещество, газ + твердое вещество, жидкость + газ, то большую роль играет площадь соприкосновения реагирующих веществ.

Очевидно, что большой кусок железа, положенный в соляную кислоту, будет гораздо дольше реагировать с ней, нежели чем измельченное железо – железная стружка.

Химическая активность также играет важную роль. Например, отвечая на вопрос: какой из металлов Li или K быстрее прореагирует с водой? Мы отдадим предпочтение литию, так как в ряду активности металлов он стоит левее калия, а значит литий активнее калия.

Иногда для верного ответа на вопрос о скорости реакции требуется знание активности кислот. Мы подробнее обсудим эту тему в гидролизе, однако сейчас я замечу: чем сильнее (активнее) кислота, тем быстрее идет реакция.

Например, реакцию магния с серной кислотой протекает гораздо быстрее реакции магния с уксусной кислотой. Причиной этому служит то, что серная кислота относится к сильным (активным) кислотам, а активность уксусной кислоты меньше, она является слабой кислотой.

Как я уже упомянул, слабые и сильные кислоты и основания изучаются в теме гидролиз.

Влияние изменения концентрации

Влияние концентрации “прямо пропорционально” скорости реакции: при увлечении концентрации реагирующего вещества скорость реакции повышается, при уменьшении – понижается.

Замечу деталь, которая может оказаться важной, если в реакции участвуют газы: при увеличении давления концентрация вещества на единицу объема возрастает (представьте, как газ сжимается). Поэтому увеличение давление, если среди исходных веществ есть газ, увеличивает скорость реакции.

Закон действующих масс устанавливает соотношение между концентрациями реагирующих веществ и их продуктами. Скорость простой реакции aA + bB → cC определяют по уравнению:

υ = k × СaA × СbB

Физический смысл константы скорости – k – в том, что она численно равна скорости реакции при том условии, что концентрации реагирующих веществ равны 1. Обратите внимание, что стехиометрические коэффициенты уравнения переносятся в степени – a и b.

Записанное выше следствие закона действующих масс нужно не только “зазубрить”, но и понять. Поэтому мы решим пару задач, где потребуется написать подобную формулу.

Окисление диоксида серы протекает по уравнению: 2SO2(г) + O2 = 2SO3(г). Как изменится скорость этой реакции, если объемы системы уменьшить в три раза?

По итогу решения становится ясно, что скорость реакции в таком случае возрастет в 27 раз.

Решим еще одну задачу. Дана реакция синтеза аммиака: N2 + ЗН2 = 2NH3. Как изменится скорость прямой реакции образования аммиака, если уменьшить концентрацию водорода в два раза?

В результате решения мы видим, что при уменьшении концентрации водорода в два раза скорость реакции замедлится в 8 раз.

Влияние изменения температуры на скорость реакции

Постулат, который рекомендую временно взять на вооружение: “Увеличение температуры увеличивает скорость абсолютно любой химической реакции: как экзотермической, так и эндотермической. Исключений нет”.

Очень часто в заданиях следующей темы – химическом равновесии, вас будут пытаться запутать и ввести в заблуждении, но вы не поддавайтесь и помните про постулат!

Итак, влияние температуры на скорость реакции “прямо пропорционально”: чем выше температура, тем выше скорость реакции – чем ниже температура, тем меньше и скорость реакции. Однако, как и в случае с концентрацией, это больше чем простая “пропорция”.

Правило Вант-Гоффа, голландского химика, позволяет точно оценить влияние температуры на скорость химической реакции. Оно звучит так: “При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два — четыре раза”

В формуле, написанной выше, используются следующие обозначение:

  • υ1 – скорость реакции при температуре t1
  • υ2 – скорость реакции при температуре t2
  • γ – температурный коэффициент, который может быть равен 2-4

Если по итогам решения задач у вас получится температурный коэффициент меньше 2 или больше 4, то, скорее всего, где-то вы допустили ошибку. Используйте этот факт для самопроверки.

Для тренировки решим пару задач, в которых потребуется использование правило Вант-Гоффа.

Как изменится скорость гомогенной реакции при повышении температуры от 27°C до 57°C при температурном коэффициенте, равном трем?

Иногда в задачах требуется рассчитать температурный коэффициент, как, например, здесь: “Рассчитайте, чему равен температурный коэффициент скорости, если известно, что при понижении температуры от 250°C до 220°C скорость реакции уменьшилась в 8 раз”.

Катализаторы и ингибиторы

Катализатор (греч. katalysis — разрушение) – вещество, ускоряющее химическую реакцию, но не участвующее в ней. Катализатор не расходуется в химической реакции.

Многие химические реакции в нашем организме протекают с участием катализаторов – белковых молекул, ферментов. Без катализаторов подобные реакции шли бы сотни лет, а с катализаторами идут одну долю секунды.

Катализом называют явление ускорения химической реакции под действием катализатора, а химические реакции, идущие с участием катализатора – каталитическими.

Ингибитор (лат. inhibere – задерживать) – вещество, замедляющее или предотвращающее протекание какой-либо химической реакции.

Ингибиторы применяют для замедления коррозии металла, окисления топлива, старения полимеров. Многие лекарственные вещества являются ингибиторами.

Так при лечении гастрита – воспаления желудка (греч. gaster – желудок) или язв часто назначаются ингибиторы протонной помпы – химические вещества, которые блокирует выработку HCl слизистой желудке. В результате этого соляная кислота прекращает воздействие на поврежденную стенку желудка, воспаление стихает.

Источник: https://studarium.ru/article/155

Влияние давления на скорость реакции

Если увеличить давление то скорость реакции

При записи кинетического уравнения реакции для газообразных систем вместо концентрации (С) пишут давление (Р) реагентов, так как изменение давления в системе аналогично изменению концентрации.

Увеличение давления в системе вызывает уменьшение объема системы во столько же раз, при этом концентрация реагентов в единице объема увеличивается так же.

При уменьшении давления происходит увеличение объема системы, при этом концентрации в единице объема уменьшится соответственно.

Примеры и решения задач.

Пример 1.

Скорость какой реакции больше, если за единицу времени в единице объема образовалось в результате первой реакции 9г водяного пара, в результате второй реакции – 3,65г хлористого водорода?

Скорость реакции измеряется количеством молей вещества, которое образуется в единице объема за единицу времени. Молярная масса воды молярная масса хлористого водорода тогда скорость первой реакции,

моль/л×с,

а скорость второй реакции

будет моль/л.

Скорость образования водяных паров больше, так как число молей образования водяного пара больше, чем число молей образования хлористого водорода.

Пример 2.

Реакция между веществами А и В выражается уравнением: А+2В®С. Начальная концентрация вещества А равна 0,3 моль/л, а вещества В–0,5 моль/л. Константа скорости равна 0,4. Определить скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшается на 0,1 моль/л.

Концентрация вещества А уменьшилась на 0,1 моль/л. Следовательно, исходя из уравнения реакции, концентрация вещества В уменьшилась на 0,2 моль/л, так как перед веществом В стоит коэффициент 2. Тогда концентрация вещества А через некоторое время станет равной 0,3-0,1=0,2 моль/л, а концентрация В – 0,5-0,2=0,3 моль/л.

Определяем скорость реакции:

моль/л×с

Пример 3.

Как изменится скорость реакции: если увеличить концентрацию NO в 3 раза? Согласно закону действующих масс запишем выражение для скорости реакции:

.

При увеличении концентрации NO в 3 раза скорость реакции будет:

Скорость реакции увеличится в 9 раз.

Пример 4.

Определите, как изменится скорость реакции, если увеличить давление в системе в 2 раза.

Увеличение давления в системе в 2 раза вызовет уменьшение объема системы в 2 раза, при этом концентрации реагирующих веществ возрастут в 2 раза.

Согласно закону действующих масс запишем начальную скорость реакции и при увеличении давления в 2 раза:

Тогда

, .

Скорость реакции увеличится в 8 раз.

Пример 5.

Рассчитайте исходные концентрации веществ А и В в системе А+3В=2С, если равновесные концентрации веществ А равна 0,1 моль/л, веществ В равна 0,2 моль/л, вещества С–0,7 моль/л.

Находим концентрацию вещества А, израсходованную на реакцию, составляя пропорцию по уравнению реакции:

2 моль/л С получено из 1 моль/л А,

0,7 моль/л С ®х моль /л × А.

моль/л А.

Следовательно, исходная концентрация вещества А равна:

= 0,1 + 0,35 = 0,45 моль/л.

Находим концентрацию вещества В, израсходованную на реакцию.

Составляем пропорцию по уравнению реакции:

2 моль/л С получено из 3 моль/л В

0,7 моль/л С ® х моль/л В

х= моль/л А.

Тогда исходная концентрация вещества В равна:

моль/л.

Пример 6.

При температуре 400 С образовалось 0,5 моль/л вещества А. Сколько моль/л А образуется, если повысить температуру до 800 С? Температурный коэффициент реакции равен 2.

По правилу Вант-Гоффа запишем выражение скорости реакции при 800 С:

.

Подставив в уравнение данные задачи, получим:

При 800 С образуется 8 моль/л вещества А.

Пример 7.

Рассчитайте изменение константы скорости реакции, имеющей энергию активации 191 кДж/моль, при увеличении температуры от 330 до 400 К.

Запишем уравнение Аррениуса для условия задачи:

где R – универсальная газовая постоянная, равная 8,32 Дж/к(К×моль).

откуда изменение константы скорости будет:

.

Контрольные задания

61. Скорость химической реакции

2NO(г) + O2(г) = 2NO2(г)

при концентрациях реагирующих веществ [NO]=0,3 моль/л и [O2]=0,15 моль/л составила 1,2·10-3 моль/(л·с). Найдите значение константы скорости реакции.

62. На сколько градусов следует повысить температуру системы, чтобы скорость протекания в ней реакции возросла в 30 раз (=2,5)?

63.Во сколько раз следует увеличить концентрацию оксида углерода в системе

2СО = СО2+ С,

чтобы скорость реакции увеличилась в 4 раза?

64.Во сколько раз следует увеличить давление, чтобы скорость реакции образования NО2по реакции

2NO + O2= 2NO2

возросла в 1000 раз?

65. Реакция идет согласно уравнению

2NO(г) + Cl2(г) = 2NOCl(г).

Концентрации исходных веществ до начала реакции составляли: [NO]=0,4 моль/л; [Cl2]=0,3 моль/л. Во сколько раз изменится скорость реакции по сравнению с первоначальной в тот момент, когда успеет прореагировать половина оксида азота?

66.Во сколько раз увеличится константа скорости химической реакции при повышении температуры на 40, если =3,2?

67.Напишите выражение для скорости химической реакции, протекающей в гомогенной системе по уравнению

А+2В=АВ2

и определите, во сколько раз увеличится скорость этой реакции, если :

а) концентрация А уменьшится в 2 раза;

б) концентрация А увеличится в 2 раза;

в) концентрация В увеличится в 2 раза;

г) концентрация обоих веществ увеличится в 2 раза.

68.Во сколько раз следует увеличить концентрацию водорода в системе

N2 + 3H2= 2NН3,

чтобы скорость реакции возросла в 100 раз?

69.Вычислите температурный коэффициент скорости реакции, если константа скорости ее при 100 С составляет 0,0006, а при 150 С 0,072.

70.Реакция между оксидом азота (II) и хлором протекает по уравнению

2NO + Cl2= 2NOCl.

Как изменится скорость реакции при увеличении:

а) концентрации оксида азота в 2 раза;

б) концентрации хлора в 2 раза;

в) концентрации обоих веществ в 2 раза?

ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Примеры решения задач

Химическим равновесием называется такое состояние системы, при котором скорости прямой и обратной химических реакций равны, и концентрации реагирующих веществ не изменяются с течением времени.

Количественной характеристикой химического равновесия является константа равновесия. Константа равновесия при постоянной температуре равна отношению произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ, взятых в степенях их стехиометрических коэффициентов, и является величиной постоянной.

В общем случае для гомогенной реакции mA+ nB« pC+qD

константа равновесия равна:

.

Это уравнение выражаем законом действующих масс для обратимой реакции.

При изменении внешних условий происходит смещение химического равновесия, выражающееся в изменении равновесных концентраций исходных веществ и продуктов реакции. Направление смещения равновесия определяется принципом Ле-Шателье: если на систему, находящуюся в равновесии, оказывается внешнее воздействие, то равновесие смещается в том направлении, которое ослабляет внешнее воздействие.

Химическое равновесие можно сместить влиянием изменения концентрации реагирующих веществ, температуры, давления.

При увеличении концентрации исходных веществ равновесие сместится в соответствии с принципом Ле-Шателье в сторону продуктов реакции, а при увеличении концентраций продуктов – в сторону исходных веществ.

При изменении температуры (ее увеличении) равновесие смещается в сторону эндотермической реакции (D H > 0), идущей с поглощением тепла, т.е.

увеличивается скорость прямой реакции, и равновесие смещается в сторону продуктов реакции.

В случае экзотермической реакции (D H > 0), при увеличении температуры увеличится скорость обратной реакции, которая будет обеспечивать поглощение тепла, и равновесие сместится в сторону исходных веществ.

Если в реакции участвуют вещества в газообразном состоянии, то химическое равновесие можно сместить изменением давления. Увеличение давления равносильно увеличено концентрации реагирующих веществ.

При увеличении давления равновесие смещается в сторону реакции с меньшим числом молей газообразных веществ, а при уменьшении давления – в сторону реакции с большим числом молей газообразных веществ.

Пример 1.

Рассчитайте исходные концентрации вещества А и В в гомогенной системе А+3В«2С, если равновесные концентрации А=0,1 моль/л, В=0,2 моль/л, С= 0,7 моль/л.

Известно, что исходная концентрация вещества равна сумме равновесной и концентрации, ушедшей на реакцию, т.е. прореагировавшей:

Чтобы найти надо знать, сколько вещества А прореагировало.

Рассчитываем , составляя пропорцию по уравнению реакций:

2моль/л С получено из 1 моль/л А

0,7 моль/л С ––––––––х моль/л А,

х= (0,7×1)/2= 0,35 моль/л

Тогда:

Рассчитываем исходную концентрацию вещества В:

Для нахождения составим пропорцию:

2 моль/л С получено из 3моль/л В

0,7 моль/л С –––––––––––––х моль/л В

х = (0,7×3)/2 = 1,05 моль/л

Тогда исходная концентрация В равна:

Пример 2.

Рассчитайте равновесные концентрации веществ в системе А+В «С+Д при условии, что исходные концентрации веществ: А=1 моль/л, В= 5 моль/л. Константа равновесия равна 1.

Предположим, что к моменту равновесия вещества А прореагировало х молей. Исходя из уравнения реакции, равновесные концентрации будут:

;

; ; ,

так как по уравнению реакции вещества В ушло на реакции столько же, сколько прореагировало вещества А.

Подставляем значения равновесных концентраций в константу равновесия и находим х.

Тогда:

Пример 3.

В системе установилось равновесие: 2АВ+В2 «2АВ; D H > 0.

В каком направлении сместится равновесие при уменьшении температуры?

Данная прямая реакция является эндотермической, т.е. идет с поглощением тепла, поэтому при уменьшении температуры в системе, равновесие в соответствии с принципом Ле-Шателье сместится влево, в сторону обратной реакции, которая является экзотермической.

Пример 4.

Равновесие системы А + В « АВ установилось при следующих концентрациях веществ: С(А)=С(В)=C(АВ)=0,01моль/л. Рассчитайте константу равновесия и исходные концентрации веществ.

Константа равновесия равна:

.

Рассчитываем исходные концентрации веществ:

.

По уравнению реакции:

= 0,01 моль/л,

= 0,01моль/л.

Тогда:

0,02 моль/л

0,02 моль/л.

Контрольные задания

71. Константа равновесия гомогенной системы

N2+ 3H2 2NH3

при температуре 400 С равна 0,1. Равновесные концентрации водорода и аммиака соответственно равны 0,2 моль/л и 0,08 моль/л. Вычислите равновесную и начальную концентрации азота.

72. Исходные концентрации оксида азота (II) и хлора в системе

2NO + Cl2 2NOCl

составляют соответственно 0,5 моль/л и 0,2 моль/л. Вычислите константу равновесия, если к моменту наступления равновесия прореагировало 20 оксида азота (II).

73.При некоторой температуре равновесные концентрации реагентов обратимой химической реакции

2А(г)+В(г) 2С(г)

составили [А]=0,04 моль/л, [В]=0,06 моль/л, [C]=0,02 моль/л. Вычислите константу равновесия и исходные концентрации веществ А и В .

74.При некоторой температуре равновесные концентрации в системе

2SO2+ O2 2SO3

составляли соответственно: [SO2] = 0,04 моль/л, [O2] = 0,06 моль/л,

[SO3]=0,02 моль/л. Вычислите константу равновесия и исходные кон-

центрации оксида серы (IV) и кислорода.

75.При состоянии равновесия системы

N2+ 3H2 2NH3,

концентрации участвующих веществ были: [N2] = 0,3 моль/л; [H2] = =0,9 моль/л; [NH3] = 0,4 моль/л. Рассчитайте, как изменятся скорости прямой и обратной реакции, если давление увеличится в 5 раз. В каком направлении сместится равновесие?

76. Вычислите константу равновесия обратимой реакции

2SO2(г) + O2(г) 2SO3(г),

если равновесная концентрация [SO3]=0,04 моль/л, а исходные концен-трации веществ [SO2]=1 моль/л, [O2]=0,8 моль/л.

77.Равновесие системы

CO + Cl2 COCl2,

установилось при следующих концентрациях реагирующих веществ: [СО] = =[Сl2] = [COCl2] = 0,001 моль/л. Определите константу равновесия и исходные концентрации окиси углерода и хлора.

78. Исходные концентрации оксида углерода (II) и паров воды равны и составляют 0,03 моль/л. Вычислите равновесные концентрации СО, Н2О и Н2в системе

CO + H2O CO2+ H2,

если равновесная концентрация СО2оказалась равной 0,01 моль/л. Вычислите константу равновесия.

79.Определите равновесную концентрацию водорода в системе

2HJ H2+ J2,

если исходная концентрация HJ составляла 0,05 моль/л, а константа равновесия К=0,02.

80.Константа равновесия системы

СО + Н2О СО2+ Н2

при некоторой температуре равна 1. Вычислите процентный состав смеси в состоянии равновесия, если начальные концентрации СО и Н2О составляют по 1 моль/л.

Источник: https://megaobuchalka.ru/4/43208.html

Расчеты изменения скорости реакции

Если увеличить давление то скорость реакции

Задача 331. 
Реакция между веществами А и В выражается уравнением: А + 2В → С. Начальные концентрации составляют: [А]0 = 0,03 моль/л, [В]0 = 0,05 моль/л. Константа скорости реакции равна 0,4.

Найти начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

Решение:
До изменения концентрации скорость реакции можно выразить уравнением:

v – скорость реакции, k – константа скорости реакции, [А] и [В] – концентрации исходных веществ.

Тогда 

Для нахождения скорости реакции по истечении некоторого времени учтём, что на образование 1 моля вещества С затрачивается 1 моль вещества А и 2 моля вещества В, поэтому при уменьшении концентрации вещества А на 0,01 моль/л, концентрация вещества В уменьшится соответственно на 0,0 2 моль/л (2 . 0.01 = 0,02). Тогда оставшиеся концентрации веществ будут равны [A]ост. = 0.03 – 0,01 = 0,02 моль/л, [B]ост. = 0,05 – 0,02 = 0,03моль/л. Тогда скорость реакции по истечении некоторого времени будет составлять:

Ответ: v1 = 3 . 10-5; v2 = 7,2 . 10-6.   

Задача 332. 
Как изменится скорость реакции 2NO (г.) + O2 (г.) → 2NO2 (г.), если: а) увеличить давление в системе в 3 раза; б) уменьшить объем системы в 3 раза; в) повысить концентрацию в 3 раза?
Решение:
До изменения объёма, давления и концентрации скорость реакции можно выразить уравнением:

v – скорость реакции, k – константа скорости реакции, [NO] и [O2] – концентрации исходных веществ.

а) Вследствие увеличения давления в системе в 3 раза, соответственно концентрация каждого из реагирующих веществ возрастёт в 3 раза. Следовательно, теперь скорость реакции будет равна:

Тогда, сравнивая  выражения v  и vа) , находим, что скорость реакции возрастает в 27 раз 

б) при уменьшении объёма в 3 раза в системе концентрация каждого из реагирующих веществ возрастёт в 3 раза. Следовательно, теперь скорость реакции будет равна:

Тогда, сравнивая  выражения v  и  vб), находим, что скорость реакции возрастает в 27 раз   

в) При увеличении концентрации NO в 3 раза скорость реакции будет равна:

Cравнивая выражения v  и  vв), находим, что скорость реакции возрастает в 9 раз     

Ответ: а) возрастёт в 27 раз; б) возрастёт в 27 раз; в) возрастёт в 9 раз.

Задача 333. 
Две реакции протекают при 25°С с одинаковой скоростью. Температурный коэффициент скорости первой реакции равен 2,0, а второй 2,5. Найти отношение скоростей этих реакций при 95°С.
Решение:
Зависимость скорости реакции (или константы скорости реакции) от температуры может быть выражена уравнением:

Здесь vt и kt – скорость и константа скорости реакции при температуре t°С; v(t + 10)  и k(t + 10)  те же величины при температуре (t + 100C);  – температурный коэффициент скорости реакции, значение которого для большинства реакций лежит в пределах 2 – 4 (правило Вант-Гоффа). В общем случае, если температура изменилась на  °С, последнее уравнение преобразуется к виду:   

Поскольку t = 700С (95 – 25 = 75), то, скорость реакции равна: 

Скорость второй реакции равна:

Найдём отношение этих скоростей:

Ответ:

 Задача 334. Чему равен температурный коэффициент скорости реакции, если при увеличении температуры на 30 градусов скорость реакции возрастает в 15,6 раза?

Решение:

Согласно правилу Вант Гоффа зависимость скорости от температуры выражается уравнением:

vt  и kt – скорость и константа скорости реакции при температуре t°С; v(t + 10)  и k(t + 10) те же величины при температуре (t + 100C); – температурный коэффициент скорости реакции, значение которого для большинства реакций лежит в пределах 2 – 4. Поскольку t = 300С, то, подставив в уравнение Вант-Гоффа значения по условию задачи, рассчитаем температурный коэффициент скорости реакции:

Ответ: 2,5.

Задача 335. 
Температурный коэффициент скорости некоторой реакции равен 2,3. Во сколько раз увеличится скорость этой реакции, если повысить температуру на 25 градусов?
Решение:
Согласно правилу Вант Гоффа зависимость скорости от температуры выражается уравнением:

vt и kt – скорость и константа скорости реакции при температуре t°С; v(t + 10)  и k(t + 10) те же величины при температуре (t + 100C);  – температурный коэффициент скорости реакции, значение которого для большинства реакций лежит в пределах 2 – 4. Поскольку t = 250С, то, обозначив скорость начальной реакции и скорость реакции при повышении температуры системы на 25 градусов соответственно через v  и  v', можем записать:

Ответ: в 8 раз.                     

Источник: http://buzani.ru/zadachi/khimiya-glinka/1138-izmenenie-skorosti-reaktsii-zadachi-373

ПроГипертонию
Добавить комментарий