Давление дымовых газов

Обратная тяга в дымоходе что делать и причины возникновения – Печь.ру

Давление дымовых газов

Тяга – это движение дымовых газов вверх по дымовой трубе дома, из области повышенного давления в область пониженного давления. В дымоходе(в трубе) установленного диаметра, высотой не менее 5м.

, образуется разрежение, это значит образуется необходимый минимальный перепад давления между нижней частью дымохода и верхней, воздух из нижней части, попадая в трубу, уходит вверх. Это и называют тягой.

Тягу можно замерить специальными чувствительными приборами, либо взять пушинку и поднести ее к трубе.

Соответственно, если взять трубу достаточного диаметра, в которой у воздуха есть возможность двигаться, и вытянуть ее высоко вверх, то воздух от земли начнет постоянно вытекать наверх. Это происходит потому что вверху ниже давление, а разрежение больше, и воздух стремится туда естественным образом. А на его место придет воздух с других сторон.

В системе «топка + дымоход» тяга действует даже если печь в частном доме не работает. При горении дров образуется повышенное давление во внутренней топочной камере и образующиеся при горении дымовые газы требуют выхода. Все топки и печи имеют конструкцию, выводящую дымовые газы в дымоход.

Высота каждого дымохода подобрана так, чтобы создалась тяга, создалось изначальное разрежение. При горении в топочной камере, выделяется тепло, газы и возникает избыточное давление. Газы движутся в дымоходе под воздействием тяги, стремятся идти из области повышенного в область пониженного давления. Работают законы созданные природой.

Что же такое «плохая обратная тяга»?

Обратная тяга – это движение дымовых газов из области повышенного давления в область пониженного, но не вверх (как описано ранее), а вниз. Обратная тяга образуется при инверсии давления – когда давление вверху выше, чем внизу.

Причинами становятся самые обыденные вещи: если в частном доме или помещении герметично, стоят стеклопакеты, а вместе с дымоходом работает вытяжка, вытягивающая воздух из помещения. Тут и создается пониженное давление относительно окружающей местности.

Поэтому, при растопке, когда дымоход пока еще холодный, у воздуха в верхней части дымохода большее давление, чем в помещении. Дым конечно пойдет туда, куда ему легче. Это явление называют «холодный столб». При остывании дымохода, внутри образуется воздушная масса низкой температуры, которая давит вниз, возникает обратная тяга.

Если давление в частном доме, не пониженное, то теплый воздух пойдет вверх, в дымоход.

Таким образом, если в доме нет кухонной вытяжки и он не герметичен, никакого застаивания холодного воздуха в топке не будет.

Проверьте: если зимой перед тем, как затопить камин, сперва поджечь газету и занести ее в трубу (минуя топочную часть), то огонь не пойдет в помещение, какой бы ни был столб холодного воздуха. Огонь будет гореть и выходить только в трубу. Это указывает на то, что давление в помещении не пониженное и теплый воздух нормально стремится вверх.

При растопке печи или камина в частном доме иногда дым идёт в помещение.

Связано это с тем, что образующиеся дымовые газы при первоначальной растопке еще не успели нагреться, и, при подъёме вверх соприкасаясь с холодными стенками, сразу охлаждаются. После этого они, естественно, устремятся вниз.

Снова возникает обратная тяга в вентиляции дымохода. Чтобы нормализовать тягу в печке, важно растапливать правильно, понимая происходящие там процессы.

Опрокидывание тяги

Еще один возникающий вопрос – это опрокидывание тяги. В каких случаях это происходит?

Если дымоход протяженный и холодный (зачастую кирпичный), а давление сниженное.

Если соотношение размеров топки и сечения дымохода соответствуют, если в доме нормальное давление, все равно возникает ситуация, когда при растопке пламени не хватает силы и отходящие дымовые газы успевают охладиться в дымоходе и обрушиваются вниз.

Почему нет тяги в дымоходе? Происходит подобное при пасмурной погоде, ветре. Бывает, что огонь нормально разгорается, но потом дым валит внутрь дома.

Почему нет тяги в печи? Почему образуется обратная тяга в дымоходе? Воздух из дома забирается, и давление снижается, притока воздуха нет. А дымовые газы поднимаясь охлаждаются и обрушиваются вниз. Что надо знать в таких ситуациях? Приоткройте форточку, если помещение имеет стеклопакеты и герметично. Важна подготовка дров, их качество.

Как правильно собрать дымоход?

Сэндвич дымоходы (сборные), собираются по дыму и по конденсату.

Существует мнение, что собирать по дыму правильнее. Объясняют тем, что на стыках труб остаются щели, куда забиваются выходящие в трубу дымовые газы. В противоположность этому, считается, что если собрать по дыму, то дым перестанет выходить.

Решить такой спор можно, если в действующей печи дома высверлить в любом месте дымохода отверстие и посмотреть, а что же произойдет. Наиболее интересно сделать это в нижней части. Отверстие высверлите любое, хоть сантиметр в диаметре. Что вы увидите? Из этого отверстия никакого дыма выходить не будет (если не закрывать плотно дымоход сверху).

Что же важнее учесть при сборке дымохода?

Главное – учесть то, что в каждом дымоходе дома возможно возникновение конденсата, особенно когда он еще холодный и теплые дымовые газы, поднимаясь сильно охлаждаются. На стенках может оседать конденсат, который стекает по трубе.

Если дымоход собран по дыму, то конденсат легко проникает в щели и увлажняет изоляцию, полностью лишая её теплоизолирующих свойств. Тут и до пожара недалеко. Поэтому сборка модульных дымоходов ведётся только по конденсату.

Дымоходы собираются на четкий стык, с герметиком по внутренней трубе. Однако дымоходы сами по себе должны быть качественными, чтобы не оставалось посторонних щелей.

Если щели останутся – через них зайдет воздух, и получается, что все равно тяги не будет.

Но дымоход ведь большой, высокий! Не понимая в чем причина, вызывают мастеров. Мастера используют простой метод: накрывают сверху дымоход и смотрят, откуда пойдет дым. Тут обнаруживаются всевозможные нестыковки в дымоходе, которые и приводят к тому, что подсасывается воздух внутрь дымохода.

Помните? Воздух стремится вверх, туда, где давление ниже. Поэтому, чем больше щелей, тем хуже тяга внизу. Сборка по дыму, к сожалению, не учитывает саму суть тяги. В результате огонь горит, а дым прёт во все стороны.

Хотя логика тут не сложная – дым идет из области повышенного в область пониженного давления, туда, куда ему легче.

В чем измеряется тяга?

Норма тяги для стандартного камина или печи – в среднем 10 Паскаль (Па). Замеряется тяга за дымовым патрубком, так как именно там видны скорость эвакуации дымовых газов и соответствие соотношению размеров топки печи и диаметра дымохода.

Что еще влияет на величину тяги?

В первую очередь, высота дымохода. Минимально необходимая высота – 5 метров. Этого достаточно для возникновения естественного разрежения и начала движения вверх. Чем выше дымоход, тем сильнее тяга. Однако, в кирпичном дымоходе сечением в среднем 140х140мм., при высоте свыше 10-12 метров, тяга уже не возрастает.

Это происходит потому, что значение шероховатости стенок растет с увеличением высоты. Поэтому, избыточная высота не влияет на тягу. Подобный вопрос возникает у желающих использовать под дымоходы каналы в домах. Они бывают большой высоты и узкого сечения, поэтому серьёзный камин редко подсоединяют к такому дымоходу.

Факторы влияющие на тягу:

  • Температура отходящих дымовых газов. Чем выше температура, тем скорее устремляются дымовые газы вверх, возникает большая тяга.
  • Прогреваемость дымохода. Чем быстрее прогревается дымоход, тем быстрее нормализуется плохая тяга.
  • Степень шероховатости дымохода, внутренних стенок. Шероховатые стенки тягу снижают, при гладких стенках тяга лучше.
  • Форма сечения дымохода. Круглое сечение – это образец; овальное, прямоугольное и так далее. Чем замысловатее форма, тем это сильнее влияет на тягу, снижая ее.
  • Важно отметить,что влияет и соотношение размеров топки, диаметра выходного патрубка и диаметра дымоходной трубы. При избыточной высоте проектируемого дымохода, следует подумать о том, чтобы уменьшить сечение дымохода в среднем на 10%. На топку, на дымовой патрубок, установить переходник (например с 200-го диаметра на 180-й) и саму трубу брать 180-ую. Это допускается производителями. Если для примера говорить о “EdilKamin”, видно, что он расписывает в инструкциях к топкам, какого диаметра брать дымоход в зависимости от высоты.

Например:

  • высота до 3 м – диаметр 250,
  • высота от 3 м до 5 м – 200,
  • высота от 5 м и выше – 180 или 160. Строгие рекомендации.

Другие производители (как пример, фирма Supra) допускают, что возможны изменения. Некоторые вовсе не допускают. Поэтому руководствуясь инструкциями, не стоит забывать и о происходящих в дымоходе процессах.

Как измеряется тяга?

Вначале затопите печь или камин в доме. Топить не менее получаса, чтобы нормализовались процессы. Затем, проделав отверстие в трубе чуть выше дымового патрубка, вставьте туда специальный датчик депримометра и измерьте тягу. Проверьте, избыточна она или ее не хватает. Факторов, влияющих на тягу, много, рассмотрим еще несколько.

Роза ветров

Ситуация когда господствующие ветра задувают прямо в дымоход и снижают тягу либо разворачивают её. Дымоход ставят с наветренной стороны, конечно если определены направления ветров.

Если дымоход расположен далеко от конька и ниже, нельзя использовать подветренную сторону. Многоэтажные дома и деревья тоже влияют на тягу. Для компенсации порывов ветра и неудачного расположения дымохода используют антиветровые дефлекторы.

По нормативам дымоход выводится на полметра выше конька. Если расстояние от конька 1,5 м – 3 м, то выводится в один уровень с коньком. Если расстояние свыше 3-х метров, то дальше действуют по формуле: от горизонтали, проведенной от конька, 10 градусов вниз.

На практике дымоход делают выше конька, либо в один уровень с коньком. Важно использовать один дымоход для одной печи в доме.

Источник: https://www.pech.ru/knowledge/chimneys/obratnaya-tyaga/

Большая Энциклопедия Нефти и Газа

Давление дымовых газов

Cтраница 1

Давление дымовых газов измеряется силой РїР° единицу площади.  [1]

Давление дымовых газов, поступающих для сушки торфа, должно быть таким же, как Рё давление газов перегонки, отсасываемых РёР· печи. РџСЂРё этих условиях без РІСЃСЏРєРёС… перегородок удается почти полностью избежать потерь газов перегонки СЃ дымовыми газами.  [2]

Точка F определяет давление дымовых газов, поступающих РІ дымосос, РєРѕРіРґР° РІСЃРµ сопротивления присоединены Рє нему только СЃРѕ стороны всасывания.  [3]

Разность показаний тягомеров равна потере давления дымовых газов, расходуемого РІ РѕСЃРЅРѕРІРЅРѕРј РЅР° трение РёС… Рѕ стенки газоходов.  [5]

Р’ контактных водяных экономайзерах, устанавливаемых Р·Р° котлами, давление дымовых газов близко Рє атмосферному, Р° начальная температура газов составляет 100 – 400 РЎ.  [7]

Нагнетаемый вентилятором нагретый РІРѕР·РґСѓС… создает РІ зазоре давление большее, чем давление дымовых газов внутри ствола, препятствует фильтрации газа через кладку футеровки Рё тем самым исключает разрушение кладки футеровки Рё железобетонного ствола трубы.  [8]

Р’ контактных водяных экономайзерах, устанавливаемых Р·Р° котлами, сушилками, печами, давление дымовых газов близко Рє атмосферному, Р° начальная температура газов составляет 100 – – 600 РЎ.  [10]

РџСЂРё фазовом переходе жидкости РІ пар парциальное давление последнего РІ порах материала ( РїРѕСЂРѕРІРѕРµ давление) становится больше барометрического давления РІРѕР·РґСѓС…Р° РІ окружающей среде Рё давления дымовых газов РІ трубе. Возникает градиент давления, РїРѕРґ действием которого РїСЂРѕРёСЃС…РѕРґРёС‚ фильтрационный перенос пара Рё жидкости Рє нагреваемой Рё холодной поверхностям.  [11]

Дымовые газы отбираются РёР· дымовой трубы котельной установки. Давление дымовых газов повышается тремя паровыми эжекторами, благодаря чему РѕРЅРё РјРѕРіСѓС‚ преодолеть сопротивление РІ колонне.  [12]

Предположим, что в борове у основания дымовой трубы отсчет по тягомеру, заполненному водой, показал 10 мм. Это означает, что давление дымовых газов на 10 мм вод. ст. меньше атмосферного.

Эта разность давлений, создаваемая дымовой трубой, Рё является побудительной силой, заставляющей РІРѕР·РґСѓС… поступать РІ топку, Р° газообразные продукты сгорания двигаться РѕС‚ топки Рє дымовой трубе.  [13]

Для крекинга остатков СЃ высоким содержанием асфальтенов используется холодильник катализатора Р· плотной фазе. Предусмотрена система утилизации тепла Рё давления дымовых газов регенерации.  [14]

Разработка систем утилизации энергии позволила значительно повысить экономическую эффективность процесса ККФ.

Р�збыточная энергия процесса РљРљР¤ складывается РёР· тепла Рё давления дымовых газов, Р° также тепла сгорания РЎРћ РІ РЎРћР· – До последнего времени для утилизации энергии применяют выносные котлы дожита РЎРћ, которые используют только тепло сгорания РѕРєРёСЃРё углерода Рё часть тепла дымовых газов.  [15]

Страницы:      1    2

Источник: https://www.ngpedia.ru/id653017p1.html

Дымовая труба, расчет

Давление дымовых газов

При устройстве печи в идеале хочется иметь такую конструкцию, которая автоматически давала бы столько воздуха, сколько надо для горения. С первого взгляда, это можно сделать с помощью дымовой трубы.

Действительно, чем более интенсивно горят дрова, тем больше должно быть горячих дымовых газов, тем больше должна быть и тяга (модель карбюратора). Но это не так. Тяга вовсе не зависит от количества образующихся горячих дымовых газов.

Тяга — это перепад давления в трубе от оголовка трубы до топливника. Определяется же она высотой трубы и температурой дымовых газов, а точнее — их плотностью.

Тягу определяют по формуле:

F= A(pв — pд) h

где F — тяга, А — коэффициент, pв— плотность наружного воздуха, pд — плотность дымовых газов, h — высота трубы

Плотность дымовых газов рассчитывают по формуле:

pд = pв (273+tв) / (273+tд)

где tв и tд — температура в градусах Цельсия наружного атмосферного воздуха вне трубы и дымовых газов в трубе.

Скорость движения дымовых газов в трубе (объёмный расход, то есть засасывающая способность трубы) G вовсе не зависит от высоты трубы и определяется разностью температур дымовых газов и наружного воздуха, а также площадью поперечного сечения дымовой трубы. Отсюда следует ряд практических выводов.

Во-первых, дымовые трубы делают высокими вовсе не для того, чтобы повысить расход воздуха через топливник, а только для увеличения тяги (то есть перепада давления в трубе). Это очень важно для предотвращения опрокидывания тяги (дымления печи) при ветровом подпоре (величина тяги должна всегда превышать возможный ветровой подпор).

Во-вторых, регулировать расход воздуха удобно с помощью устройств, изменяющих площадь живого сечения трубы, то есть с помощью задвижек. При увеличении площади поперечного сечения канала дымовой трубы, например, вдвое — можно ожидать примерно двукратного увеличения объёмного расхода воздуха через топливник.

Поясним это простым и наглядным примером. Имеем две одинаковые печи. Объединяем их в одну. Получаем вдвое большую печь с удвоенным количеством горящих дров, с двукратными расходом воздуха и площадью поперечного сечения трубы. Или (что является тем же самым), если в топливнике разгорается всё больше дров, то необходимо всё больше и больше открывать задвижки на трубе.

В-третьих, если печка горит нормально в установившемся режиме, а мы добавочно пустим в топливник поток холодного воздуха мимо горящих дров в трубу, то дымовые газы тотчас охладятся, и расход воздуха через печь сократится. При этом горящие дрова начнут затухать.

То есть мы вроде бы непосредственно на дрова не влияем и направляем дополнительный поток мимо дров, а получается так, что труба может пропустить меньше дымовых газов, чем раньше, когда этот дополнительный поток воздуха отсутствовал.

Труба сама сократит поток воздуха на дрова, что был ранее, и к тому же не пустит добавочный поток холодного воздуха. Иными словами, дымовая труба запрётся.

Вот почему так вредны подсосы холодного воздуха через щели в дымовых трубах, излишние потоки воздуха в топливнике да и вообще какие-либо теплопотери в дымовой трубе, приводящие к снижению температуры дымовых газов.

В-четвёртых, чем больше коэффициент газодинамического сопротивления дымовой трубы, тем меньше расход воздуха. То есть стенки дымовой трубы желательно выполнять как можно более гладкими, без завихрений и без поворотов.

В-пятых, чем меньше температура дымовых газов, тем более резко изменяется расход воздуха при колебаниях температуры дымовых газов, что и объясняет ситуацию неустойчивости работы трубы при розжиге печи.

В-шестых, при высоких температурах дымовых газов расход воздуха не зависит от температуры дымовых газов. То есть при сильном разгорании печи расход воздуха перестаёт увеличиваться и начинает зависеть только от сечения трубы.

Вопросы неустойчивости возникают не только при анализе тепловых характеристик трубы, но и при рассмотрении динамики газовых потоков в трубе. Действительно, дымовая труба представляет собой колодец, заполненный лёгким дымовым газом.

Если этот лёгкий дымовой газ поднимается вверх не очень быстро, то не исключена вероятность того, что тяжёлый внешний воздух может попросту утонуть в лёгком газе и создать падающий нисходящий поток в трубе.

Особенно вероятна такая ситуация при холодных стенках дымовой трубы, то есть во время розжига печи.

Рис. 1. Схема движения газов в холодной дымовой трубе: 1 — топливник; 2 — подача воздуха через поддувало; 3—дымовая труба; 4 — задвижка; 5 — каминный зуб; 6—дымовые газы; 7—проваливающийся холодный воздух; 8 — поток воздуха, вызывающий опрокидывание тяги.

а) гладкая открытая вертикальная трубаб) труба с задвижкой и зубом

в) труба с верхней задвижкой

Сплошные стрелки — направления движения лёгких горячих дымовых газов. Пунктирные стрелки — направления движения нисходящих потоков холодного тяжёлого воздуха из атмосферы.

На рис. 1а схематически изображена печь, в которую подаётся воздух 2 и выводятся через дымовую трубу дымовые газы 6.

Если поперечное сечение трубы велико (или скорость движения дымовых газов мала), то в результате какой-либо флуктуации в трубу начинает проникать холодный тяжёлый атмосферный воздух 7, достигая даже топливника.

Этот падающий поток может заменить «штатный» поток воздуха через поддувало 2. Даже если печь будет заперта на все дверцы и все заслонки воздухозаборных отверстий будут закрыты, то всё равно печь может гореть за счёт поступающего сверху воздуха.

Кстати, именно так часто и бывает при догорании углей при закрытых дверях печей. Может даже произойти полное опрокидывание тяги: воздух будет поступать сверху через трубу, а дымовые газы — выходить через дверцу.

В действительности же на внутренней стенке дымовой трубы всегда имеются неровности, наросты, шероховатости, при соударении с которыми дымовые газы и встречные нисходящие холодные воздушные потоки взвихриваются и перемешиваются друг с другом. Холодный нисходящий поток воздуха при этом выталкивается или, нагреваясь, начинает подниматься вверх вперемешку с горячими газами.

Эффект разворачивания нисходящих потоков холодного воздуха вверх усиливается при наличии частично открытых задвижек, а также так называемого зуба, широко применяемого в технологии изготовления каминов (рис. 1б). Зуб препятствует поступлению холодного воздуха из трубы в каминное пространство и предотвращает тем самым дымление камина.

Нисходящие потоки воздуха в трубе особенно опасны в туманную погоду: дымовые газы не в состоянии испарить мельчайшие капельки воды, охлаждаются, тяга снижается и может даже опрокинуться. Печь при этом сильно дымит, не разгорается.

По той же причине сильно дымят печи с сырыми дымовыми трубами. Для предотвращения возникновения нисходящих потоков особенно эффективны верхние задвижки (рис. 1в), регулируемые в зависимости от скорости дымовых газов в дымовой трубе. Однако эксплуатация таких задвижек неудобна.

Рис. 2. Зависимость коэффициента избытка воздуха а от времени протопки печи (сплошная кривая).

Пунктирная кривая — потребный расход воздуха Gпотр для полного окисления продуктов сгорания дров (в том числе сажи и летучих веществ) в дымовых газах (в относительных единицах).

Штрих-пунктирная кривая — реальный расход воздуха Gтрубы обеспечиваемый тягой трубы (в относительных единицах). Коэффициент избытка воздуха является частным отделения Gтрубы  на Gпотр

Устойчивая и достаточно сильная тяга возникает только после прогрева стенок дымовой трубы, на что требуется значительное время, Так что в начале протопки воздуха всегда не хватает. Коэффициент избытка воздуха при этом меньше единицы, и печь дымит (рис. 2).

И наоборот: по окончании протопки дымовая труба остаётся горячей, тяга долго сохраняется, хотя дрова уже практически сгорели (коэффициент избытка воздуха — больше единицы).

Металлические печи с металлическими утеплёнными дымовыми трубами быстрее выходят на режим ввиду малой теплоёмкости по сравнению с кирпичными трубами.

Анализ процессов в дымовой трубе можно продолжить, но уже и так ясно, что как бы ни хороша была сама печь, все её достоинства могут быть сведены к нулю плохой дымовой трубой.

Конечно, в идеальном варианте дымовую трубу надо было бы заменить современной системой принудительной вытяжки дымовых газов с помощью электрического вентилятора с регулируемым расходом и с предварительной конденсацией влаги из дымовых газов.

Такая система помимо прочего могла бы очищать дымовые газы от сажи, окиси углерода и других вредных примесей, а также охлаждать сбрасываемые дымовые газы и обеспечивать рекуперацию тепла.

Но всё это — в далёкой перспективе. Для дачника и садовода дымовая труба порой и так может стать намного дороже самой печи, особенно в случае отопления многоуровневого дома.

Банные дымовые трубы обычно попроще и покороче, но уровень тепловой мощности печи может быть очень большим.

Такие трубы, как правило, сильно прогреты по всей длине, из них часто вылетают искры и пепел, но выпадение конденсата и сажи незначительно.

Если вы пока планируете использовать банное здание только как баню, то трубу можно делать и неутеплённой.

Если же баня задумывается вами и как место возможного пребывания (временного проживания, ночёвок), особенно зимой, то целесообразнее трубу сразу делать утеплённой, причём качественно, «на всю жизнь».

Печки при этом можно менять хоть каждый день, подбирать конструкцию поудачней и по-нужнее, а труба будет одна и та же.

По крайней мере, если печка работает в режиме длительного горения {тления дров), то утепление трубы абсолютно обязательно, поскольку при низких мощностях (1 — 5 кВт) неутеплённая металлическая труба станет совсем холодной, будет обильно течь конденсат, который в самые сильные морозы может даже замёрзнуть и перекрыть льдом трубу.

Это особенно опасно при наличии искроуловительной сетки и зонтов с малыми проходными зазорами. Искроуловители целесообразны при интенсивных протопках летом и крайне опасны при слабых режимах горения дров зимой.

По причине возможного забивания труб льдом установка дефлекторов и зонтов на печных трубах была запрещена в 1991 году (а на дымоходах газовых печей ещё раньше).

По тем же соображениям не стоит увлекаться высотой трубы — уровень тяги не так уж важен для безоборотной банной печи. Если же она будет поддымливать, всегда можно быстро проветрить помещение.

А вот высоту над коньком крыши (не менее 0,5 м) следует соблюсти обязательно для предотвращения опрокидывания тяги при порывах ветра. На пологих же крышах труба должна выступать над снежным покровом.

Во всяком случае лучше иметь трубу пониже, но потеплее (чем повыше, но холоднее). Высокие трубы зимой всегда холодные и опасные в эксплуатации.

Холодные дымовые трубы имеют массу недостатков.

В то же время неутеплённые, но не очень длинные трубы на металлических печах при растопке прогреваются быстро (много быстрее, чем кирпичные трубы), остаются горячими при энергичной протопке и поэтому в банях (и не только в банях) применяются очень широко, тем более что они относительно дёшевы. Асбоцементные трубы на металлических печах не используют, так как они имеют большой вес, а также разрушаются при перегреве с разлётом осколков.

Рис. 3.

Простейшие конструкции металлических дымовых труб: 1 — металлическая круглая дымовая труба; 2 — искроуловитель; 3 — колпак для защиты трубы от атмосферных осадков; 4 — стропила; 5 — обрешётка крыши; 6 —деревянные бруски между стропилами (или балками) для оформления противопожарного проёма (разделки) в крыше или перекрытии (при необходимости); 7 — конёк крыши; 8 — мягкая кровля (рубероид, гидростеклоизол, мягкая черепица, гофрированные картонно-битумные листы и т.п.); 9 — металлический лист для настила крыши и перекрытия проёма (допускается использовать плоский лист ацеида — асбоцементную электроизоляционную доску); 10 — металлическая водоотводная накладка; 11 — асбестовая герметизация зазора (стыка); 12 — металлический колпак-выдра; 13 — потолочные балки (с заполнением пространства утеплителем); 14 — обшивка потолка; 15 — пол чердака (при необходимости); 16 — металлический лист потолочной разделки; 17 — металлические усиливающие уголки; 18 — металлическая крышка потолочной разделки (при необходимости); 19 — утеплитель негорючий термостойкий (керамзит, песок, перлит, минвата); 20 — защитная накладка (металлический лист по слою асбестового картона толщиной 8 мм); 21 — металлический экран трубы.

а) нетеплоизолированная труба;
б) теплоизолированная экранированная труба с сопротивлением теплопередаче не менее 0,3 м2-град/Вт (что эквивалентно толщине кирпича 130 мм или толщине утеплителя типа минваты 20 мм).

На рис. 3 представлены типичные монтажные схемы неутеплённых металлических труб. Саму трубу следует приобретать из нержавеющей стали толщиной не менее 0,7 мм. Наиболее ходовой диаметр российской трубы — 120 мм, финской — 115 мм.

По ГОСТ 9817-95 площадь поперечного сечения многооборотной дымовой трубы должна составлять не менее 8 см2 на 1 кВт номинальной тепловой мощности, выделяющейся в топке при горении дров.

Эту мощность не следует путать с тепловой мощностью теплоёмкой печи, выделяющейся с наружной кирпичной поверхности печи в помещение по СНиП 2.04.05-91. Это — одно из многочисленных недоразумений наших нормативных документов.

Поскольку теплоёмкие печи обычно топятся лишь 2-3 часа в сутки, то мощность в топке примерно в десять раз больше мощности выделения тепла с поверхности кирпичной печи.

В следующий раз мы поговорим об особенностях монтажа дымовых труб.

Источник: http://mainstro.ru/dymovaya-truba-raschet/

Исследование свойств дымовой трубы для бытовой печи. Выбор параметров трубы

Давление дымовых газов

Цель работы — определение влияние конструктивных параметров трубы, скорости и температуры газов на потери тяги. Обоснование выбора оптимального диаметра гладкой металлической трубы. Сравнение круглых гладких металлических труб с кирпичной трубой. Определение технических возможностей кирпичной трубы «четверик» и «пятерик». Регулировка тяги.

Расчет диаметра дымовой трубы обычно проводят исходя из количества сжигаемого топлива за один час, и соответственно количества дымовых газов, проходящих по трубе и задавая скорость дымовых газов. Однако такой подход не является оптимальным.

Если задать определенное значение потерь давления в трубе, то можно рассчитать оптимальное соотношение диаметра трубы и скорости дымовых газов через нее. Получено аналитическое выражение для определения оптимального диаметра трубы. Определены технические возможности кирпичной трубы «четверик» и «пятерик».

В работе показаны возможности по регулировке излишней тяги способом установки дополнительной задвижки перед трубой. Приведена эквивалентная схема печной системы.

Ключевые слова:тяга трубы, металлическая гладкая труба, труба «сендвич», кирпичная труба, потери давления.

Природа возникновения тяги в дымовой трубе для бытовой печи и для котельных агрегатов одна и та же. Но режим работы бытовой печи и котельного агрегата значительно отличаются по режиму работы. Печь топится периодически один-два раза в сутки. А котельный агрегат, как правило, работает непрерывно. Это накладывает свои особенности и на режим работы дымовой трубы.

При сжигании дров в печи труба из полностью холодного состояния начинает прогреваться, и не всегда успевает полностью прогреться за время сгорания дров, что приводит к значительно большим падениям температуры на трубе [4]. И после окончания процесса горения опять полностью охлаждается.

Это необходимо учитывать при определении величины тяги трубы и расчете ее конструктивных параметров.

Естественной тягой называется разность давлений ∆Р наружного воздуха и горячих газов в печной трубе и определяется разностью веса двух столбов газа с разными температурами и одинаковой высотой. Тяга трубы и приводит в движение дымовые газы в печи.

Здесь тяга трубы будет рассмотрена именно, как тяга трубы, без учета тяги самой печи.

Поскольку величина тяги самой печи («самотяга») зависит в значительной мере от конструктивных особенностей печи, то ее влияние на тягу трубы при данном рассмотрении учитываться не будет.

Давление создаваемое в трубе газами [3], [7]:

 = * *g                                                                                                           (1)

Где  — высота дымовой трубы (м),

 — плотность дымовых газов в дымовой трубе (кг/м³),

g — ускорение свободного падения (9,81 м/с²).

Поскольку состав дымовых газов в трубе бытовой печи не сильно отличается по составу от воздуха, то вместо плотности дымовых газов можно взять плотность воздуха при соответствующей температуре в трубе. Ошибка при этом будет ничтожной [7].

Давление, создаваемое на том же уровне наружным воздухом:

 = * *g                                                                                                             (2);

Где —  плотность наружного воздуха, зависящая от температуры и давления воздуха (кг/м³).

Сила естественной тяги:

 = =  —  = ) (Па)                                                    (3)

Где – тяга, создаваемая дымовой трубой с учетом падения давления на внутреннем сопротивление трубы. При нулевых потерях в трубе =;

 — теоретическая тяга дымовой трубы или разрежение при закрытой задвижке в Па;

=+                                                                                                            (4);

 — потери давления в трубе;

атмосферное давление =100000Па;

 — температура наружного воздуха (К);

 — средняя температура газов в дымовой трубе (К);

287,1 — газовая постоянная воздуха(Rв).

Газовая постоянная газообразных продуктов сгорания (Rг) зависит от их состава.

В таблице 1 приведены характеристики составляющих дымовых газов.

Таблица 1

Характеристики составляющих дымовых газов

Тогда для воздуха:

С =

Окончательная формула тяги дымовой трубы:

=С **  ( — ) (Па)                                                                            (5)

Формула (5) дает точное значение для воздуха. Поскольку дымовые газы состоят большей частью из азота и остатков кислорода, а  и паров О значительно меньше, то формула (5) даст достаточно точное значение тяги в трубе.

На рисунке 1 приведены графики изменения теоретической тяги трубы, рассчитанные по формуле (5) для разных внешних температур воздуха.

Рис. 1. Графики изменения теоретической тяги трубы

Как видно из графиков рисунок 1 температура внешнего воздуха весьма заметно влияет на величину тяги в дымовой трубе, особенно при небольших температурах дымовых газов.

На рисунке 2 приведены графики тяги трубы, полученные расчетом по формуле (5) и полученные при испытании печи ПДКШ 2,0. Замеры проводились цифровым датчиком дифференциального давления Прома-ИДМ-010–025-ДД1 с минимальным пределом измерения 60 Па.

Рис. 2. График разряжения в трубе печи ПДКШ 2,0

Отличие измеренного значения разряжения в трубе и рассчитанного по формуле (5) можно объяснить тем, что состав дымовых газов в процессе сгорания дров изменяется. На начальном этапе горения дров в дымовых газах довольно много водяных паров, образующихся из воды, имеющейся в дровах. У паров воды, таблица 1, газовая постоянная в 1,6 раза больше чем у воздуха.

Это приводит к некоторому снижению тяги (разряжения) в трубе. После испарения большей части воды из дров, начинает сказываться наличие в дымовых газах двуокиси углерода, у которой газовая постоянная в 1,5 раза меньше чем у воздуха. Это приводит к некоторому повышению тяги трубы.

Но и кроме всего, при движении дымовых газов по трубе, часть величины теоретической тяги тратится на преодоление сопротивления трения о стенки трубы.

Сопротивление зависит от вида движения газов в трубе. Существует ламинарное и турбулентное движение газов. При турбулентном движении сопротивление пропорционально квадрату скорости течения газа.

При ламинарном движении сопротивление пропорционально первой степени скорости.

Характер движения зависит от величины диаметра канала, по которому движется газ, от скорости и вязкости ее и определяется так называемым числом Рейнольдса: [5]

Rе =

Где v — скорость движения (см/с);

d — диаметр канала (см);

y — кинематическая вязкость;

p — масса 1 см³ движущейся среды при 0⁰;

µ — абсолютная вязкость.

При числе Re3000, то движение будет турбулентным.

Между Re3000 характер движения неустойчивый ламинарное движение сменяется турбулентным и наоборот. Для уменьшения сопротивления при движении газов в трубе желательно, чтобы движение газов при всех режимах горения дров было ламинарным.

Т. е. Re

Источник: https://moluch.ru/archive/97/21774/

Тяга в дымовой трубе котельного агрегата

Давление дымовых газов

Тяга в дымовой трубе котельного агрегата и ввод воздуха в топку котла могут быть естественными и искусственными. Для горения топлива необходим непрерывный подвод в топку котла атмосферного воздуха и удаление из топки котла образующихся дымовых газов в атмосферу через дымоход и дымовую трубу.

Естественная тяга осуществляется в котельных агрегатах производительностью до 2,5 т/час и с сопротивлением газового тракта не более 300 Па (30 мм водяного столба] при сжигании нешлакующих или малошлакующих топлив (дрова, торф) с помощью установки дымовой трубы. Естественной тягой называют разность давлений (появляющуюся вследствие различных плотностей наружного холодного воздуха и горячих дымовых газов в трубе котельной установки, которая приводит к возникновению движения потока дымовых газов в газоходах котла.

Тяга, Па, создаваемая в трубе газами,

     где Нтр — высота дымовой трубы, м;

     gг — плотность дымовых газов в дымовой трубе, кг/м ,

     g — ускорение свободного падения (9,81 м/с2).

Давление, создаваемое на том же уровне наружным воздухом,

       где gв — плотность наружного воздуха, зависящая от температуры и давления воздуха, кг/м3.

Сила естественной тяги

        где  Sт — тяга, создаваемая дымовой трубой;

        р0 — давление воздуха по барометру. Па;

        ТВ — термодинамическая температура наружного воздуха, К

        ТГ  — средняя термодинамическая температура газов в дымовой трубе, К;

        287,1 — газовая постоянная воздуха (Rв);

газовая постоянная газообразных продуктов сгорания (Rг) зависит от их состава — Rг к Rв ( табл. 23).

Таблица 23. Характеристика газов

Пример.

Сделать расчет тяги в котле, развиваемую дымовой трубой высотой 50 м в зимнее время, при средней температуре уходящих дымовых газов = 300°С, температуре наружного воздуха  tВ  = —30°С  и давлении наружного воздуха PВ= 100 кПа (750 мм рт. ст.).

Находим значения  ТГ  и ТВ  в градусах Кельвина:

ТГ  =

 + 273 = 300 + 273 =  573К;

ТВ  = tВ  + 273 =  —30 + 273 = 243К.

По формуле (58) определяем тягу, развиваемую дымовой трубой

Схема создания естественной тяги в топке котла показана на рис. 97. В установку включены топка 2, котел и экономайзер 4. Тяга осуществляется дымовой трубой 5.

Дымовые газы при прохождении через котлоагрегат испытывают сопротивление о твердые поверхности газохода и сопротивление, вызываемое изменением направления движения потока газа.

Высоту дымовой трубы принимают такой, чтобы всегда имелся некоторый запас тяги, т.е. разрежение в топке (создаваемое трубой), которое должно быть больше суммы всех сопротивлений, получающихся в процессе прохождения газов по газоходам котлового агрегата.

Для нормальной работы топки котла необходимо поддерживать в ней постоянное разрежение 20 — 30 Па (2 — 3 мм вод. ст.).

Поэтому полная тяга, Па, создаваемая дымовой трубой и обозначаемая S, должна быть достаточной для преодоления всех аэродинамических сопротивлений котельного агрегата и создания разрежения в топке

Sт =  Σ ΔSka + 20 — 30

где ΔSka — сумма сопротивлений всех элементов котельного агрегата.

В зависимости от температуры наружного воздуха тяга дымовой трубы изменяется:

  • чем ниже температура наружного воздуха, тем больше разность плотностей воздуха и дымовых газов в трубе и тем больше тяга,

  • чем выше температура наружного воздуха, тем меньше тяга.

Изменение тяги происходит и при изменении режима работы парового котла. В этом случае тягу регулируют большим или меньшим открытием соответствующих заслонок.

При увеличении нагрузки котлов увеличивают часовое количество сжигаемого топлива, количество подаваемого в топку воздуха и усиливают тягу, что осуществляется большим открытием соответствующих заслонок, а при снижении нагрузки котла уменьшают подачу в топку топлива и воздуха и соответственно прикрыть заслонки.

дымовые трубы строят стальными, кирпичными пли железобетонными в зависимости от мощности котельных агрегатов или котельной установки и срока работы, на который котельная установка рассчитана.

Стальные трубы (рис. 98, а) применяют редко, главным образом при временных установках и не выше 30 — 40 метров. Для котельных установок средней и большой мощности строят кирпичные трубы (рис. 98,6) высотой до 80 метров и железобетонные высотой 80—250 метров.

Для предохранения кирпичной кладки и железобетонной трубы от действия горячих газов внутри трубы выводят футеровку 8 из огнеупорного кирпича приблизительно на 1/4 ее высоты.

В кирпичных и железобетонных трубах газы остывают приблизительно на 1°С, а в остальных — на 1,5 — 2°С на каждый метр высоты трубы.

Дымовые трубы

Дымовые трубы должны иметь высокую надежность и долговечность при умеренной стоимости сооружения. До высоты 120 метров применяются дымовые трубы различных типов — кирпичные, металлические, из сборных элементов, монолитные железобетонные.

Дымовые трубы высотой более 120 метров имеют, как правило, железобетонную коническую оболочку, которая воспринимает ветровые и весовые нагрузки. Внутренняя часть дымовой трубы, непосредственно соприкасающаяся с уходящими дымовыми газами котлов и энергетических установок, выполняется при этом по-разному.

Наибольшее распространение до настоящего времени имели дымовые трубы с прижимной футеровкой из красного или кислотоупорного кирпича, укладываемого на консолях несущего железобетонного ствола (рис. 11.17, а).

Однако эта конструкция дымовой трубы не является достаточно надежной, так как не исключает проникновения агрессивных дымовых газов к несущему железобетонному стволу трубы.

Рис. 11.17. Типы Дымовых труб с железобетонным несущим стволом (оболочкой). .

а —

Дымовая труба с кислотоупорной прижимной футеровкой;

б —Дымовая труба с вентилируемым непроходным зазором;

в —Дымовая труба с цилиндрическим кремнебетонным газоотводящим стволом и проходным зазором;

г —  Дымовая труба многоствольная с металлическими газоотводящими стволами;

1 — фундамент;

2 — железобетонный ствол;

3 — футеровка;

4 — вентилируемый непроходной зазор;

5 — вентиляционная установка:

6 — газоотводящий ствол;

7 — диффузор;

8 — цоколь.

Модификацией этого типа дымовой трубы, обеспечивающей повышенную надежность, является дымовая труба с вентилируемым непроходным зазором между газоотводящим стволом из кирпича и железобетонной оболочкой (рис. 11.17,6).

Подогретый в паровых калориферах до температуры 60—100°С воздух подается в зазор шириной 100—200 мм с помощью вентилятора, установленного под дымовой трубой.

В некоторых случаях вентиляция в зазоре может осуществляться за счет самотяги.

Наиболее высокой надежностью отличается дымовая труба, состоящая из газоотводящего ствола цилиндрической формы, отделенного проходным (обслуживаемым) зазором от железобетонного несущего ствола конической формы (рис. 11.17, а). Внутренний ствол дымовой трубы выполняется из кремнебетонных плит, отличающихся высокими коррозионными свойствами, или стального листа.

Для тепловых электростанций ТЭС с набором большого количества разнотипного парогенерирующего и теплогенерирующего оборудования, особенно на ТЭЦ, получили применение многоствольные дымовые трубы (рис. 11.

17,г), в которых внутри железобетонной оболочки устанавливается несколько (обычно 3—4) металлических стволов цилиндрической формы. Каждый ствол заменяет отдельно стоящую трубу дымовую трубу и обслуживает подсоединенные к нему котлы.

В верхней части цилиндрические стволы дымовой трубы переходят в секторные для создания единого дымового факела, обеспечивающего подъем на большую высоту.

Для надежной работы всех конструкций дымовых труб необходимо, чтобы давление внутри газоотводящего ствола на любой отметке было меньше, чем в окружающей атмосфере на этом же уровне.

В этом случае при наличии каких-либо неплотностей в стволе дымовой трубы воздух будет подсасываться к дымовым газам.

В случае положительной разности давлений между дымовыми газами и воздухом может произойти просачивание агрессивных газов через футеровку и несущий ствол и разрушение несущего ствола дымовой трубы.

Разность статических давлений

газов в стволе и окружающем воздухе, Па, в любом сечении дымовой трубы определяется по формуле

ΔРст = Рдо +  Σ ΔРтр — Рд —

gΔPL20 / 2 — динамическое давление газов в устье дымовой трубы, Па; Рд — динамическое давление газов на расстоянии l от выходного сечения; w0, w — скорости газов в устье дымовой трубы и в рассматриваемом сечении, м/с; Σ ΔРтр — потери на трение от рассматриваемого участка до верха трубы, Па; g — ускорение свободного падения, м/с2; ΔР = Pв — P — разность плотностей воздуха и дымовых газов (обычно Pв = 1,2 кг/м3 при tв = 20°С).

Для цилиндрического участка потери на трение определяются по выражению

ΔРтр =

ξ · l/d · Рдо    (11. 65)

а для участка конической формы

ΔРтр = ξ / 8i · (Рдо — Рд)      (11.66)

где ξ  — коэффициент трения. Для металлических газоотводящих стволов принимается ξ  = 0,015, для кремнебетонных ξ = 0,02; для футерованных конических стволов с учетом выступов  ξ = 0,05.

Отсутствие избыточных статических давлений по всей высоте (ΔРст 1, то в некотором сечении диаметра Dм конической дымовой трубы статическое давление достигает максимального значения  рст.м, Па.

Отношение максимального статического давления к динамическому давлению на выходе из трубы находится по выражению

φм = рст.м / Рдо = (1+ ξ / 8i) · S     (11. 68)

относительный диаметр ствола, в котором это отношение достигает максимума,

Dм = D/D0

= R0,2     (11. 69)

Значения множителя S в формуле (11.68) в зависимости от числа R приводятся ниже:

R 1,2 1,4 1,6 1,8 2,0 2,5 3,0 4,0 5,0
S 0,012 0,037 0,066 0,10 0,120 0,208 0,257  0,351 0,420

Если дымовая труба имеет переменный по высоте уклон, то обычно максимальное статическое давление наблюдается в верхней части трубы, и определение φм  производится по формуле (11.68) для верхнего ее участка.

В некоторых случаях максимальное статическое давление может быть и на нижележащем участке. Это происходит, если число R, вычисленное на этом участке, окажется больше единицы. В этом случае рст.м следует определять по общей формуле (11.

64), разбивая трубу по высоте на ряд участков и строя эпюру статических давлений.

Для дымовых труб цилиндрической формы (i  = 0) избыточное статическое давление в условиях ТЭС встречается редко (обычно R

Источник: http://www.sergey-osetrov.narod.ru/Projects/Boiler/Chimney.htm

ПроГипертонию
Добавить комментарий